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A. INTRODUCTION

The long-range objective of the work performed under this contract has
been to construct realistic models of water waves using solitons and other
intrinsically nonlinear waves as the fundamental building blocks. In
principle, both deterministic and statistical models could be constructed in
this way, and the models might be appropriate either for surface or for
internal waves, in deep water or in shallow water. The basic idea is that
because water waves are known to be fundamentally nonlinear, one has a better
chance of describing them with mathematical models that are also fundamentally
nonlinear. This report describes the progress we have made in achieving that

objective.

B. THE BOTTOM LINE

Here is a very brief report on our progress. The current contract has
been funded since 1980. During that time, the Principal Investigator has
published 12 papers and one book dealing with aspects of nonlinear models of
water waves. These are listed in 8G of this report. The most important paper
; on this list is that of Segur & Finkel (1984). It gives an analytical model of

periodic waves in shallow water. This model has 8 free parameters, and an
explicit algorithm is given to deduce these 8 parameters from 8 specific
measurements of the wave. In this sense, the model 1is completely
deterministic. The waves described by this model are intrinsically nonlinear,

and they are periodic in two independent horizontal directions. Just as
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waves in shallow water, this model can be used to describe "typical" periodic

waves in shallow water when the restriction of one-dimensionality is relaxed,

To our knowledge, this is the first practical model ever of periodic
waves in shallow water, in which the waves are intrinsically nonlinear and
two-dimensional. The point is not that the model is more accurate than its
competitors, but rather that it has no competitors. In this respect, the
research program effected under this contract has been completely successful.
It is unfortunate that the program has been terminated just when its practical
benefits were about to be realized.

C. BACKGROUND

A more complete accounting of the work done under this contract requires
a broader perspective, because the subject of water waves is not restricted to
surface waves in shallow water. We begin the more comprehensive review by
defining a basic concept (integrability) that will be used in the remainder of
this report. A partial differential equation is said to be integrable if it
can be solved exactly as an initial value problem, with arbitrary initial data
in a certain class. Most linear equations are integrable in this sense, but
integrable nonlinear equations are uncommon. However, it happens that several
nonlinear equations that are known to be integrable are also models of water
waves in various contexts. Among the one-dimensional models of water waves
(i.e., models in which the wave pattern varies in one spatial dimension and in
time), the following equations all are integrable.

1. The Korteweg-deVries (KdV) equation,

u * buuy +uy =0 (v
describes the evolution of long surface waves of moderate amplitude as they
propagate without dissipation in only one direction in relatively shallow
water (Korteweg & deVries, 1895). It also describes the evolution of 1long
internal waves under similar circumstances.
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2.

For internal waves, there are several meanings of "long". The KdV equation
applies

if the horizontal wavelength is long in comparison wWith the total
fluid depth (Benney, 1966). If it is long in comparison with the thickness of
the appropriate pycnocline, but small in comparison with the total depth, then
the appropriate evolution equations is due to Benjamin (1967) and Ono (1975),

u, *+ uu, + H (uxx) =0, (2)

where H (+) denotes the Hilbert transform. An intermediate equation that

interpolates between these two is due to Joseph (1977) and Kubota, Ko and
Dobbs (1978),

uo *uu, + T (uxx) = 0, (3a)

where

1 ®
T (f) = > JE@ coth % (y - x) £ (y) dy, (3b)

and the integral is evaluated in the principal-value sense.

3. Long internal waves also admit a degenerate configuration in which the
{scaled) coefficient of the nonlinear term in (1) exactly vanishes. In this
case, the KdV equation should be replaced by the so-called modified
Korteweg-deVries equation (mKdv),

- u2 =
u - ufuy tu =0, )

as shown by Djordjevic & Redekopp (1978).

4. Marginally unstable baroclinic waves

on a beta-plane satisfy the
sine-Gordon equation,

O = sin ¢ , (5)




v .

as shown by Gibbon, James & Moroz (1979).

5. The fundamental nonlinear interaction between internal and/or inertial
waves of moderate amplitude is called a resonant ¢triad, or three-wave
interaction (Phillips, 1976). The equation describing the interaction of
exactly three resonant wave packets is

- Y *

at Al + c‘ ax Al i N Az A:, (6)
= * AR

at AZ + cz ax Az i Yz AS Al’
= Y * *

at A’ + C3 ax A’ i s Al Az,

where Aj is the complex amplitude of the envelope of the jth packet, with

linear group velocity Cjy» and Y, Y, Y, < 0.

6. The nonlinear Schré&dinger equation,

1A+ A, +20 |A[?2A=0, o=11, (7
describes the evolution of a packet of a nearly monochomatic surface waves in
sufficiently deep water (Zakharov, 1968). This equation also describes the

evolution of a nearly monochromatic packet of edge waves (Whitham, 1976).

All of these equations were derived from the known inviscid equations of
surface or internal water waves by taking various limits. That each of the
models should be integrable is quite remarkable. A consequence of this
integrability is that each of these equations admits various families of exact
solutions, which we now discuss. Solitons are spatially localized, traveling
waves that retain their identity despite interaction with other localized
waves. For the KdV equation, a single soliton is simply the solitary wave that
was found by Korteweg-deVries:

u (x,t) = 2 «? sech’{ k(x - 4 k2t + x)} . (8)
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The integrability of (1) guarantees that it admits not only (8) as a solution,

but also more complicated exact solutions, called N-soliton solutions
(Gardner, Greene, Kruskal, Miura, 1974). These can be viewed as exact,
nonlinear superpositions of N solitary waves. It is because solitons can be
combined exactly in this way that we can hope to use them as the fundamental
building blocks in a new, intrinsically nonlinear model of water waves.

All of the integrable equations listed above admit solitons of some sort, -
and this same argument applies to any of the soliton solutions. In every case,

the solitons are localized in space.

Korteweg & deVries also discovered a periodic traveling wave solution of

(1), which they called a cnoidal wave:
u (x,t) =2 p*k? en?[p(x - ct + x,) s k] + ug, (9)
where con [¢;k] is Jacobian elliptic function with modulus k. Like the

solitons, these periodic waves can be embedded in families of more complicated

solutions, called N-gap solutions. These solutions are Qquasi-periodic

functions of space and time, and they can be written in the form
u (x,t) = 2 3% 1n o, (10)

where © is a Riemann theta function of genus N. The N-soliton formulae follow
from these quasi-periodic solutions by taking an appropriate (infinite-period)
limit.

The KdV .admits a third kind of special solution,
..2/! l/!
u (x,t) = (3t) f \x/(3t) R (11)
where f(n) satisfies a nonlinear ordinary differential equation, and is

related to one of Painlevg's transcendents. The important role of these
self-similar solutions in the long-time (t + =) asymptotic solution of (1) was

shown by Ablowitz & Segur (1977), and verified experimentally in water wave




experiments by Hammack & Segur (1978).

Thus, for the KdV equation we have exhibited three different kinds of
exact solutions, any or all of which might serve as building blocks in a new
model of water waves. As one might expect, each of the integrable equations
listed above has its own set of special solutions, which are discussed in
detail by Ablowitz & Segur (1981). It remains to use these special solutions

self-consistently to construct realistic models of water waves.

D. THE MASTER PLAN

What steps are required to construct realistic models of water waves,
based on these special solutions of integrable equations? A logical and

prudent sequence of steps is the following:

1. Identify an integrable evolution equation in (1 + 1) dimensions that
describes approximately the evolution of surface, internal and/or inertial
waves under appropriate conditions. (One can regard equations (1)-(7) as the

cumulative result of work on this step.)
2. Solve the initial value problem for arbitrary smooth initial data that:

a) vanish rapidly enough as x + + »; or

b) are periodic on a finite interval.

These are two different problems and they require different methods of
solution. Here "solve" means to prescribe an explicit algorithm to construct
the solution of the evolution equation at any finite time that evolved from
the given initial data. To be effective, the algorithm must be uniformly valid
in time, and this requirement excludes the possibility of direct numerical

integration of the evolution equation.

3. The general solution of the initial value problem s generally too

complicated to be of practical value. However, the general solution can be

approximated by combinations of the special solutions listed above (solitons,




similarity, and quasi-periodic solutions) in a way that is consistent with the

dynamics.

a) For problems posed on - » < x < =, the solution usually simplifies in

the long time (t » =) limit. Determine the long-time behavior of the general

solution.

b) For problems with periodic boundary conditions on finite interval,
the solutions are recurrent, so there is no long-time limit. For these
problems, prescribe an effective method to extract important dynamical
information from the general solution. For example, given some initial data
for one of the evolution equations listed above, determine the first

recurrence time.

4. All of the integrable evolution equations listed above are
non-dissipative, whereas real water waves are slightly viscous. Determine the

effect of weak viscous damping on these special solutions.

5. At this point, one can make precise predictions about the evolution of
real water waves, provided that the waves are constrained to evolve in only
one spatial direction (by a narrowWw wave tank, for example). Determine the

accuracy of this one-dimensional model in controlled laboratory experiments.

6. Most problems in water waves require models that are either
two-dimensional (surface gravity waves, internal waves on a pycnocline) or
three dimensional (general internal and/or inertial waves). Embed he
integrable equation in (1 + 1) dimensions into a physically appropriate model
of water waves in (2 + 1) or in (3 + 1) dimensions. This higher dimensional

model may or may not be integrable.

7. Determine whether the one-dimensional solitons and other special
solutions or solitons are stable to transverse perturbations. Unstable

solutions probably cannot be used in a practical model of water waves.

8. Determine whether the higher dimensional model is integrable. If so,

repeat steps 2-5 for the higher dimensional problem.
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9. Construct practical deterministic models of waterwaves, using the stable,
intrinsically nonlinear waves found by this approach.

10. Construct practical statistical models of water waves, using the stable,

intrinsically nonlinear waves found by this approach.

E. CONCRETE RESULTS

How do the papers published under this contract fit into this master

plan? These papers can be organized according to the types of waves being
studied.

1. Surface waves in shallow water

In (1 + 1) dimension, the governing equation is (1), and steps 1-5 had
been completed before the present contract began (see Hammack & Segur, 1978).

A generalization of (1) to (2 + 1) dimensions is the equation of Kadomtsev and
Petviashvili (1970):

(“t + buu, + uxxx)x =3o0uyy, o=zl (12)

This equation turns out to be integrable for ¢ = + 1. For capillary-type
waves, o0 = + 1. Segur (1982b) resolved an aspect of the initial-value problem
for (12) with ¢ = + 1, on - @ < X,y < ». For gravity-type waves, ¢ = - 1. A
preliminary model of periodic waves in shallow water, based on (11) with
¢ = - 1, was given by Segur, Finkel and Philander (1983). The final version
was published later by Segur & Finkel (1984). As discussed in §B, this is
probably the most important piece of work completed under this contract. It is
a concrete example of how one can use nonlinear waves as the basic building

blocks in a model of water waves.
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2. Surface waves in deep water

Here the governing equation in (1 + 1) dimensions is (7). Segur (1981)
found a simple rule for the viscous decay of the envelope solitons of (7).
These envelope solitons are unstable to transverse perturbations, however, so
their practical value 1is not evident, except 1in narrow wave tanks in

laboratories.

3. Long internal waves on a pycnocline

This problem may have important naval implications, because of the
possibility of submarine detection. Consequently, 5 papers were published on
aspects of this subject. Ablowitz & Segur (1980) derived equations analogous
to (2) and (3), but for periodic waves. Ablowitz, Fokas, Satsuma & Segur
(1982) generalized (2) and (3) to (2 + 1) dimensions, and determined the
transverse stability of their solitary waves. Segur & Ablowitz (1981) found
the 1long-time (t * ») solution of (4) and (5). The KdV equation, (1),
describes both long internal waves and long surface waves, but the viscous
decay rates of their solitons differ, as shown by Hammack, Leone & Segur
(1982). The most important paper in this series was by Segur & Hammack (1982),
who compared the predictions of (1) and (3) with experimental data, and

resolved an outstanding puzzle about the validity of these two models.

hy, General internal waves

Segur (1980) cleared up a popular misconception about how surface and
internal waves interact. Segur (1983) created an irreversible, statistical
model of internal wave interactions, based on solutions of the (3 + 1)
dimensional generalization of (6). This model is not yet practical because of
certain mathematical ambiguities that have not yet been resolved. Even so, it
may be the first genuinely new generalization of Boltzmann's equation in the

last fifty years.
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5. Reviews

Segur (1982a) and chapter 4 of Ablowitz & Segur (1981) review how all of J
these theories fit together to give a (still incomplete) picture of how water

waves evolve.

F. SUMMARY q

Clearly the plan outlined in 8D is ambitious. It is not surprising that
the plan has not yet been completed for all of the models listed in §C.
Fortunately, the plan was carried to the point of producing one finished ’
model, given by Segur & Finkel (1984). The accuracy of this model must still
be determined experimentally. Even so, because of the simplicity and the
intrinsic strength of the model, we expect it to become as widely used as an
engineering model of periodic waves in shallow water as the cnoidal wave has

been heretofore.
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